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Abstract

Biomedical Signal Processing for Diagnosis Support

Esteban J. Pino, Sc.D.

Universidad de Concepcién, 2009

As medical knowledge advances and life expectancy increases, the ratio of medical
care providers to patients is reduced. It is expected that in the near future, “at risk”
population will be too large to be adequately treated in hospitals and clinics. Moreover,
the aging population will expect better life quality and will demand for self care at home
or other familiar environments.

Patient monitoring in non-standard sites will become increasingly relevant. In
emergency response sites, hazardous environments, nursing homes or individually at home,
pervasive patient monitoring will provide a higher level of safety without impairing normal
activities and life quality.

This thesis presents some necessary elements for an untethered monitoring system.
Data acquisition sensors, infrastructure for data transmission, algorithms for data processing
and analysis, alarm generation and location system are presented and discussed. Originally
intended for disaster situations, the components, specifications and required performance
of this system are easily conditioned to other environments.

This work was developed during the design, implementation and testing of such a

system, and presents detailed descriptions and results from a pilot study in the Emergency
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Department of the Brigham and Women’s Hospital in Boston, Massachusetts, USA. Results
show the feasibility of implementing a pervasive monitoring system, its perceived utility and
key issues that need to be addressed.

This thesis presents diagnostic support algorithms that use acquired data from
ECG and SpOs sensors to provide on-line information on the medical status of the patient.
A quantitative criterion to select a physiologic signal processing algorithm in noisy environ-
ments is proposed. The alarming system is able to indicate dangerous conditions, trying
to minimize false positives (false alerts) and avoiding false negatives (failure to alert when
needed), by combining sensor information. Results from real and simulated patients on
the accuracy of a multiple diagnosis algorithm are presented and the problems encountered

while monitoring untethered patients are discussed.
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Resumen

Procesamiento de Senales Biomédicas para Apoyo Diagnéstico

Esteban J. Pino, Sc.D.

Universidad de Concepcién, 2009

A medida que avanza el conocimiento médico y las expectativas de vida aumentan,
el personal médico se ve cada vez mas exigido. Se espera que en el futuro cercano la
poblacion “en riesgo” aumente de tal manera que no sera posible entregar una atencién
adecuada en hospitales y clinicas. Ademés, la poblacién de adultos mayores va a esperar
una mejor calidad de vida y va a demandar la opcién de autocuidado en su propio hogar o
en otros lugares de su eleccién.

El monitoreo de pacientes en ambientes no estdndar se volverd cada vez maés re-
levante. Lugares de atencién improvisados para respuesta a emergencias, ambientes peli-
grosos, hogares de ancianos o casas particulares son los principales candidatos. Mediante
monitoreo remoto, es posible proveer un mayor nivel de seguridad sin interferir en las ac-
tividades normales ni perjudicar la calidad de vida de los sujetos.

Esta tesis presenta los elementos necesarios para un sistema de monitoreo ina-
lambrico. Se presentan y se discuten los sensores para adquisicién de datos, infraestructura
para transmitirlos, algoritmos de procesamiento y analisis, generacién de alarmas y sistemas
de localizacion. Originalmente pensado para situaciones de desastre, los componentes, es-

pecificaciones y el desempeno requerido para este sistema son facilmente adaptables a otros
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ambientes.

Este trabajo fue desarrollado durante el disenio, implementacién y prueba de uno
de estos sistemas. Se presentan descripciones detalladas y resultados de un estudio piloto
en el Departamento de Emergencias del Brigham and Women’s Hospital en Boston, Mas-
sachusetts, USA. Los resultados muestran la factibilidad de implementar un sistema de
monitoreo permanente, su utilidad y los problemas clave que deben ser abordados.

Esta tesis presenta algoritmos de apoyo diagnéstico que utilizan datos de ECG
v SpO9 para proveer informacion en tiempo real de la condicién médica del paciente. Se
propone un criterio cuantitativo para seleccionar algoritmos de procesamiento de senales fi-
siologicas en ambientes ruidosos. Mediante la combinacién de la informacién de los sensores,
el sistema de alarmas es capaz de indicar condiciones peligrosas. El algoritmo utilizado in-
tenta minimizar los falsos positivos (falsas alarmas) y evitar los falsos negativos (falla en
alertar cuando se requiera). Se presentan resultados de un algoritmo de diagnéstico multiple
obtenidos en pacientes reales y simulados. Finalmente, se discuten los problemas encontra-

dos al monitorear pacientes en libertad de movimiento.
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Chapter 1

Introduction



1.1 Current Issues

Common knowledge defines “at-risk” patients as people more likely to suffer some
event that may critically affect their health. There can be many causes, such as disease
or aging for cardiac or bronchopulmonary patients, dangerous job environments such as
mining, firefighting or diving and mass casualty events such as natural disasters, terrorist
attacks or wars. Whether at home, in waiting rooms, at work or at improvised emergency
sites, most of the time “at-risk” people lie unattended until an emergency condition occurs.
Thus, their care changes back and forth from proper intensive medical care after a critical
episode to self care in a non-medical setting.

Continuous monitoring of unattended patients is desirable in many settings, even
after an initial triage to assess urgency. One such setting is an overcrowded emergency
department (ED), where there is always the concern that a patient in the waiting area may
deteriorate suddenly without being noticed. Similarly, at a disaster site, where patients far
outnumber caregivers, some monitoring of post-triage patients could be useful. At home
or in nursing houses, a system that monitors at-risk patients may provide an extra level
of safety, specially at night or during otherwise normal activities. In these situations, it is
desirable to have a system to monitor patient status and location, and to alert one or more
caregivers of significant events in an efficient way.

Building a continuous monitoring system for an overcrowded emergency room or

disaster site has many challenges:

e Selecting vital signs and location sensors that are low-cost, low-power, accurate and

able to communicate with other components.



e Selecting a light-weight, low-cost platform that incorporates wireless communications,

can be integrated with the sensors, and has a long battery life.

e Devising a packaging of the sensors and platform that is acceptable to patients and

convenient to handle.

e Guaranteeing that the wireless system can support the concurrent monitoring of a

large number of patients.

e Analyzing the data from the sensors and presenting alerts and data to appropriate

caregivers in a way that does not overload them.

e Integrating these components into a workable system that can be quickly deployed at
a disaster site, that is familiar to disaster personnel, and that will scale to monitor

large numbers of patients.

This thesis focuses on the different aspects required to implement such a monitor-
ing system. It was developed as part of the SMART (Scalable Medical Alert and Response
Technology) project, in Boston, Massachusetts (USA) from 2004 to 2006. The SMART sys-
tem was implemented in the Emergency Department of the Brigham and Women’s Hospital

and tested on real patients from June 2006 to October 2007.

1.2 Hypothesis

The working hypothesis is:

It is feasible to continually monitor untethered patient’s vital signs,
and give providers appropriate warnings of critical values.



1.3 Goals

1.3.1 Main Goal

The main goal of this work is to develop signal processing algorithms for wireless
ambulatory patient monitoring systems, such as the SMART system. These algorithms

must be portable to similar environments.

1.3.2 Specific Goals

e To continually monitor untethered patients, the algorithms have to:

— Continuously monitor simple physiologic signals such as 1-lead ECG and SpOa.

— Be robust in presence of noisy signals, as is expected from a real setting.

— Communicate clinical patient information to a decision module (server or client-
based).

e To give providers appropriate warnings, the algorithms must:

— Rely on other available measurements to cross-check data when possible.

— Be reliable, aiming for low false positives and no false negatives.

— Determine intermediate conditions to propose changes in case prioritization (tri-
age).

e Finally, we want to integrate these algorithms into a pervasive monitoring system that

provides a means to monitor and locate multiple patients.
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2.1 Problematica global

Los pacientes “en riesgo” se definen como aquellos individuos con mayor probabi-
lidad de sufrir algin evento que afecte su salud en forma critica. Hay muchas formas de
convertirse en un paciente en riesgo. Entre ellas, las enfermedades cardiacas o broncopul-
monares, envejecimiento, condiciones de trabajo peligrosas como para mineros, bomberos
o buzos y situaciones de catastrofe como desastres naturales, ataques terroristas o guerras.
Ya sea en el hogar, en salas de espera, en el trabajo o en lugares de atencién improvisados,
la mayor parte del tiempo estos pacientes en riesgo no son atendidos hasta que caen en un
estado critico de salud. Por esta razén, el cuidado de su salud se alterna entre una atencién
intensiva después de un episodio critico a auto cuidado en ambientes no médicos.

Existen muchas situaciones en que es deseable un monitoreo continuo de estos
individuos, incluso inmediatamente después de una evaluacién inicial del estado del paciente
(triage). Un ejemplo de esto ocurre en el departamento de emergencias (ED) de un hospital,
donde generalmente se encuentra un alto nimero de personas en riesgo que deben esperar
a ser atendidas. Siempre existe la posibilidad de que alguien se agrave sin que el personal
se entere a tiempo. De manera similar, en cualquier lugar donde los pacientes superen
largamente al personal médico, un monitoreo continuo es de gran utilidad. También en el
hogar o en casas de reposo, el monitoreo de pacientes en riesgo permite un nivel extra de
seguridad y tranquilidad, tanto para el afectado como para su familia. En estas situaciones,
es altamente deseable un sistema que informe sobre el estado y la ubicacion de los pacientes
y permita alertar a personal especializado en el caso de un evento grave.

Desarrollar e implementar un sistema de monitoreo continuo para multiples pa-



cientes presenta varios desafios:

e Seleccion de sensores de signos vitales y localizacién que sean bajo costo, baja potencia,

precisos y capaces de comunicarse con otros componentes.

e Seleccion de una plataforma liviana y de bajo costo que incorpore comunicaciones
inaldmbricas, permita integrar distintos sensores y de larga duracién operando con

baterias.

e Diseno fisico del equipo para que sea aceptable por los pacientes y de facil manejo.

e Capacidad de soportar el monitoreo de multiples pacientes en forma concurrente.

e Analisis de datos recopilados y generacién de alarmas que apoyen el trabajo del per-

sonal médico.

e Integracién de estos componentes en un sistema funcional que pueda ser desplegado
rapidamente en cualquier sitio, que sea familiar al personal médico y que pueda ser

escalado para soportar un alto niimero de pacientes.

Esta tesis se centra en los distintos aspectos requeridos para implementar un sis-
tema de monitoreo como el descrito. Fue desarrollada como parte del proyecto SMART
(Scalable Medical Alert and Response Technology), en Boston, Massachusetts (USA) desde
el afio 2004 al 2006. El sistema fue implementado en el Departamento de Emergencias del
Brigham and Women’s Hospital y fue probado en pacientes reales desde Junio del 2006 a

Octubre del 2007.



2.2 Hypodtesis

La hipotesis de trabajo es:

Es posible monitorear signos vitales de pacientes en libertad de
movimiento en forma continua y proporcionar advertencias adecuadas
en caso de eventos criticos.

2.3 Objetivos

2.3.1 Objetivo Principal

El objetivo principal de este trabajo es desarrollar algoritmos de procesamiento de
senales para monitoreo inaldmbrico de pacientes ambulatorios como en el caso del sistema

SMART. Estos algoritmos deben ser facilmente adaptables a sistemas similares.

2.3.2 Objetivos Especificos

e Para el monitoreo continuo de pacientes ambulatorios, los algoritmos deben:

— Monitorear en forma continua seniales fisiologicas simples como ECG de 1 deri-

vacién y SpOas.

— Ser robustos en presencia de senales con ruido, como es de esperar en un ambiente

real.

— Comunicar informacioén clinica de los pacientes a un modulo de decisiones.
e Para generar alarmas adecuadas, los algoritmos deben:

— Incorporar otras mediciones para contrastar los datos en la medida de lo posible.



— Ser confiables, buscando una baja ocurrencia de falsos positivos y sin falsos ne-

gativos.
— Mostrar condiciones intermedias para proponer cambios en la priorizacion de los

pacientes (triage).

e Finalmente, se deben integrar estos algoritmos a un sistema de monitoreo ubicuo que

permita el cuidado y la localizacion de multiples pacientes.
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3.1 Hardware

The hardware consists mainly of off-the-shelf equipment. Patients are equipped
with an HP iPaq 5500 PDA, connected to a custom-made 1 lead, 3 electrodes ECG ac-
quisition card, with a sampling rate of 200 Hz and an 8 bit ADC. An Ipod model 3212,
a commercial SpOg sensor from Nonin Medical, Inc. [1], is used for oxygen saturation
monitoring and HR validation. The ECG and SpOy data come through the serial ports
in an iPaq backpack and are transmitted wirelessly (802.11b) to a server. The backpack
also provides an additional battery pack, extending the maximum monitoring time to about
4 hours. A similar but sensorless PDA is used to remotely monitor patients and manage
alarms.

Patients are tracked with an Indoor Positioning System (IPS) from Sonitor ® [2].
The pen-like tags transmit an ultrasound pulse to networked detectors, which relay the in-
formation to SMART Central where the final position is computed. Three of such detectors
are wired to the router while the remaining 12 are connected to ASUS WL-330gE wireless
access points.

SMART Central is the main server and operator station. It is a standard AMD
Athlon 64, 1 GHz, 1 GB RAM desktop computer. It is wired to an 802.11b/g wireless router,
which manages the internal network used by the mobile PDAs, the location system and the
occasional laptop PC used for debugging or backup. The coverage area was originally the
ED waiting room, but was later expanded to an overflow area (main lobby) using two
commercial Linksys WREB4G wireless range extenders. For compatibility reasons, the

wireless network is run in 802.11b mode.
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Patient PDA p| ORNetDB Sma%ﬁ?"tra'
(Python) (C++) 4_’

(Java)

Database

Monitoring PDA < (PostgreSQL)

(Python)

SMART Central PC

Figure 3.1: SMART software components.

3.2 Software

Software for the SMART project is written in Python, C++ and Java, according to
the requirements and platforms where the different components are located. ORNetDB [3],
the underlying connecting software that gets the data from the remote sensors, processes,
logs and feeds data to its clients, is written in C++4. It was originally developed at MIT,
as an Operating Room Network interface, and works as a streaming database. This soft-
ware allows input of queries into the database to subscribe to real-time data, addition of
intermediate processing nodes, combination of multiple inputs, and logging of the data
into a standard SQL database. A PostgreSQL [4] database is used for data logging. Both
ORNetDB and PostgreSQL database run in SMART Central.

There are 2 different Python programs that run on the PDAs. The patient version
has configuration screens to set-up the PDA and optional live ECG and SpOs display for
debugging purposes. The caregiver software has a patient roster and patient-specific screens

with live ECG tracings. It also provides a way to respond to alarms generated by SMART
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Central. Both versions communicate wirelessly with ORNetDB for data transfer.
SMART Central’s “visible” software is written in Java, and provides a GUI for
the Smart Operator, a paramedic in charge of monitoring the system and alerting a triage

nurse when necessary.

3.2.1 Signal Processing

The actual ECG processing is done in 2 steps. In ORNetDB, beat detection is
performed as soon as the data enter the streaming database. Then, the raw ECG signal,
the beat positions and the SpOs-derived HR are further processed in SMART Central to
compute the ECG HR and suggest a diagnosis. This scheme is selected to facilitate patient-
specific alarm threshold modifications by the operator directly in SMART Central. All
sensor data and computed values are saved into the PostgreSQL database.

Location data are also processed in SMART Central. An algorithm selects the

most likely location for the tags based on signal strength and detector tuning.

3.3 Test Data

PhysioNet [5] data are used to evaluate ECG beat algorithm accuracy. The MIT-
BIH Arrhythmia Database contains clean recordings from real patients presenting a variety
of arrhythmias. It is normally used as the standard for algorithm evaluation [6] because it
has accurate beat annotations. The annotated beat positions are compared to the detected
beats to compute sensitivity and positive predictability. Using recorded noise also available

from [5], 6 different SNR sets of data were generated to extensively test the algorithms
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Figure 3.2: Patient simulator wearing PDA and ECG electrodes.

under varying noise conditions.

For the diagnosis algorithm, test data are obtained from healthy volunteers using
the actual hardware developed for SMART. However, in order to get abnormal rhythms for
training and testing, a simulator is used. The abnormal data are recorded at the STRATUS
Center, part of the Department of Emergency Medicine at Brigham and Women’s Hospi-
tal. This center is equipped with a Laerdal SimMan™ [7] computer-controlled patient
simulation system. The “patient” is an adult-sized mannequin that breathes, has pulse,
blood pressure and heart, lungs and bowel sounds among other features. To obtain data,
a SMART patient PDA is connected to the mannequin (Fig. 3.2) running a simulation of
various heart conditions. Two sets of records are obtained: one for training purposes and
another for testing after the final algorithms are implemented. SpOs data are not available
from the simulator.

The healthy volunteer sessions add up to 3194 min of ECG data and 3276 min

of SpOs2 data from 38 individuals. The STRATUS data are 15.4 min long: 5.7 min for
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the training session and 9.7 min for the testing session. The rhythms on the STRATUS
training session data are split into individual files and then combined into longer records, to
simulate different patient state transitions. The abnormal rhythms simulated are tachycar-
dia, bradycardia, ventricular tachycardia, ventricular fibrillation, second degree block and

asystole.

3.4 Pilot Study

The pilot study was conducted between June 19, 2006 and October 1, 2007, in the
Waiting Area of the Emergency Department (ED) at the Brigham and Women’s Hospital in
Boston. We conducted our pilot study there because it provides a controlled environment
with ambulatory patients in whom the expected rate of real events is higher than normal.
The assumption is that in an ED waiting room there is a higher proportion of “at-risk” pa-
tients. Only patients presenting cardiovascular or respiratory complaints with intermediate

severity statuses, based on triage, are eligible for the study.
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4.1 Background

Biomedical signals have unique characteristics that require special processing. This
is mainly due to the fact that generally, only indirect measurements are made, such as
electrical potentials on the skin to monitor electrical activity of the heart, or light absorption
of the finger to estimate blood light absorption to then estimate blood oxygen content. On
the positive side, a large number of processing algorithms are available. To select and tune
the best option, it is necessary to evaluate both the signal and the noise on a case by case
basis.

The algorithms to be developed must process two kinds of biomedical signals.
Bioelectric (for ECG) and Biooptical (for SpOg2). Bioelectric signals are generated in the
body during muscular contractions and nervous activity. In both cases, there is a cell mem-
brane potential that fluctuates, producing a chain reaction that propagates this potential
through the muscle or nerve cell. In muscle cells, it produces contraction, and in nerve cells,
neurotransmitter release for signal relaying. Non-invasive sensors detect potential changes
induced by the electric field. Bioelectric signals are probably the most sensed of biomedical
signals. It allows ECG (heart), EEG (brain) and EMG (muscles) measurements. Biooptical
signals are measured, directly or indirectly, from transmitted or scattered light. Blood oxy-
genation is estimated measuring light absorption at two different frequencies. Information
on fetus status can be acquired from fluorescense characteristics of the amniotic fluid.

The anticipated noise characteristics, common to both bioelectric and biooptical
signals to be acquired for this thesis, arise from the ambulatory nature of the monitoring.

Since it is impractical to provide a noise controlled environment, the signal processing
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algorithms must be able to deal with disturbances from:

Noisy signals from low cost, portable and/or disposable sensors.

Motion artifacts, from sensor displacements while the patient moves freely.

e Muscular artifacts in ECG signals.

Loss of signal when a patient walks out of wireless coverage or a sensor falls off.

Both ECG and SpOs are stochastic signals (cannot be described mathematically).
However, they can be considered as “almost periodic” or stationary stochastic processes,
enabling the use of periodic signal processing techniques such as Short-Time Fourier Trans-
form. Stochastic signals cannot be expressed exactly. They are described in terms of

distribution probabilities.

4.1.1 ECG

The electrocardiogram (ECG or EKG) is the surface recording of the electrical ac-
tivity generated by the heart. Einthoven, in 1903, enhanced the technology and introduced
concepts still in use today. The EKG acronym comes from Einthoven native language:
cardio in Dutch is spelled with a “K”. The basic ECG recording configuration is shown
in Figure 4.1 [8]. Later, Wilson proposed a different configuration that evolved into the
current augmented leads, as shown in Figure 4.2 [8]. Finally, leads V; through Vg were
introduced (Figure 4.3 [8]), completing the current 12 lead standard ECG. This configura-
tion is redundant and non-optimal, but became a standard due to the massive amount of

recorded data.
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Figure 4.1: ECG basic configuration.
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Figure 4.2: ECG augmented leads aVL, aVR, aVF.



20

S

Ll Bt g R S

e o<
I
— 8
|
=)
<

Figure 4.3: ECG chest leads V1, Vo, V3, V4, V5 and V.

ECG signals are low amplitude (£ 2 mV), and have a wide frequency range, from
0.05 Hz to 150 Hz. Figure 4.4 [8] shows a typical ECG wave, and Figure 4.5 [8] show
computer-based measurements, typically requested by cardiologists.

Ambulatory monitoring has to be able to detect deviations from the normal ECG
shape in presence of varying amounts of noise. Typical ECG processing algorithms include
Filtering (band pass filters, notch filters), QRS complex detection, Heart rate variability

processing and Baseline correction.

4.1.2 SpO,

Oximetry is the measurement of oxygen saturation, or the relative amount of oxy-
gen carried by Hemoglobin in the blood. Fortunately, Oxyhemoglobin (HbO3) and reduced
Deoxyhemoglobin (Hb) have different light absorbance profiles (Figure 4.6 [8]). This is

due to the fact that, when Hb is combined with O3, a conformational change takes place,
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Figure 4.6: Oxyhemoglobin (HbO3) and deoxyhemoglobin (Hb) absorbance at different
wavelengths.

producing a significant color change. This is the reason why oxygenated (arterial) blood is
bright red and deoxygenated (venous) blood is dark red. Arterial (SaO2) or venous (SvO2)
oxygen saturation measurements are based on light transmission or reflection directly from
tissue or blood. Typical wavelengths are 660 nm red light, where there is a significant dif-
ference in HbO9 and Hb absorbance, and 805 nm infrared light, at the isobestic wavelength,
where HbOo and Hb absorbance is similar. Sometimes, instead of the isobestic, a higher
wavelength is used (>805 nm), where the absorbance of Hb is slightly smaller than that of
HbO,.

Pulse oximetry (SpO2) is a method to estimate arterial oximetry (SaOz) non-
invasively. It was first suggested by Aoyagi et al. and Yoshiya et al. [9]. It relies on
the detection of a time-variant photoplethysmographic signal, caused by changes in arterial

blood volume at each cardiac contraction. A typical arrangement consists of two LEDs of
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Figure 4.7: Typical pulse oximeter configuration.

different wavelengths placed at one side of a finger or ear lobe, and a sensitive photodetector
on the other side, as shown in Figure 4.7 [8].

SpOs is derived by analyzing only the time-variant changes in absorbance caused
by the pulsating arterial blood at the same red and infrared wavelengths used in conven-
tional invasive type oximeters. A normalization process is commonly performed by which
the pulsatile (AC) component at each wavelength, which results from the expansion and
relaxation of the arterial bed, is divided by the corresponding nonpulsatile (DC) compo-
nent of the photoplethysmogram, which is composed of the light absorbed by the bloodless
tissue and the nonpulsatile portion of the blood compartment. This effective scaling pro-
cess results in a normalized red/infrared ratio which is dependent on SaOy but is largely
independent of the incident light intensity, skin pigmentation, skin thickness, and tissue
vasculature.

Pulse oximetry is noninvasive, inexpensive, simple to apply, and can produce re-

markably accurate saturation estimates at saturation levels above 70%. This is sufficient
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Figure 4.8: Hemoglobin oxygen saturation (SaOs) versus partial oxygen pressure (PO3).

since SaO9 under 80% correspond to a partial oxygen pressure (PO3) of about 40 mmHg,
which can lead to hypoxia (Figure 4.8 [8]). It has the added benefit that the AC component
of the signal can be used as a heart rate measurement. Pulse oximetry has, therefore, be-
come widespread in patient monitoring, and has been adopted as a standard for anesthesia,
neonatal care, and post-operative recovery.

The main problem during SpOs signal acquisition is the introduction of artifacts.
Even small movements, such as shivering, can cause deformation in the area or sensor
displacement relative to the skin. These changes alter the signal path and produce noise.
Different algorithms have been developed to deal with noise, although a common solution

is to simply freeze the last valid reading until a new reliable measurement can be made.
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4.2 Patient Monitoring

4.2.1 ECG Analysis

Previous work on ECG processing related to the difficulties in ambulatory analysis
is presented. These papers are a reference to the current state of knowledge on ECG analysis.
Articles on baseline wander removal, ECG delineation, noise reduction, arrhythmia and
ischemia detection and different processing algorithms were selected.

One of the most cited articles on Real-Time ECG processing is [10]. In 1985,
Pan and Tompkins published a detailed procedure for an algorithm based on digital filters
and adaptive thresholds for QRS detection. They reported accuracy on the MIT-BIH
arrhythmia database, before it became one of the standard databases for beat evaluation.

In [11], the authors present a method to design a low-pass differentiator (LPD)
filter, assuming a priori knowledge of both signal and noise spectra. Several examples of
digital filters suitable for QRS complex and P-T wave processing in ECG are presented.

[12] proposes an algorithm to detect ECG characteristic points using Wavelet
Transforms. QRS complexes can be distinguished from P and T waves in presence of
noise, baseline drift and artifacts. Tests performed on the MIT-BIH database achieve over
99.8% detection rate. The algorithm relies on the analysis of the signal at different scales
provided by a generalized linear phase quadratic spline wavelet.

[13] uses the Fourier transform to detect changes in QRS complex that indicate
life-threatening ventricular arrhythmias in each heartbeat. QRS complex is detected and
extracted before calculating the frequency components. The rhythms are then discriminated

by a neural network as ventricular or supraventricular and fibrillation or tachycardia. Tests
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using surface and intracardiac electrograms achieve a specificity of over 98%.

In [14], the authors present a study of beat to beat variability in presence of noise,
while most of the studies involve signal acquisition at rest. They use a simple cardiac action
potential model including variations due to respiration. QRS variability due to respiration
is reduced by means of loop alignment but becomes deteriorated at high noise levels. The
authors introduce a relationship between vectorcadiogram (VCG) loop morphology and
noise level. The measurement of noise level and loop planarity may be used to predict loop
alignment reliability.

In [15], the authors present an algorithm to correct baseline drift from ECG record-
ings. It is implemented as a two step procedure for selective filtering with minimal distor-
tion of cardiac complexes. The procedure was successfully tested on 100 simulated and
210 real ECG signals. Unfortunately, the algorithm is computationally intensive, requiring
forward /backward filtering, frequency estimation and least-squares line fitting for each 20 s
of data.

[16] presents a server-based ECG processor for remote clinical diagnosis support.
The purpose is to have a centralized server with advanced signal processing algorithms to
submit locally acquired ECG data. The implemented application provides 5 different ECG
processing techniques. The data are submitted to a MATLAB web server and requires only
a Web browser on the client side.

A complete review of available methods for heart beat classification is presented
in [6]. Algorithms are compared in terms of accuracy and speed. A special note on the need

to report results on standard databases is made.
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[17] provides an enhanced method for baseline wander removal. The proposed
method is simple and fast and preserves the ST segment of the original signal. The algorithm
considers QRS complex and skeletal muscle signal removal in a first stage and then baseline
wander removal in a second stage. Although the method is tuned for neonatal ECG signals,
references are provided that may help adapt it to adult signals. Baseline wander and skeletal
muscle artifacts are bound to be present in ambulatory ECG monitoring.

[18] provides a detailed discussion of the current methods used for ECG data
analysis. Fourier Transform, Autocorrelation, Delay Times, Approximate Entropy, Singular
Values Decomposition and Discrete Wavelet Transform were applied to 2 sets of records in
order to differentiate healthy from coronary artery disease subjects. Their results show the
characteristics of each method and their ability to detect nonlinear signal dynamics. An
appendix is included with mathematical formulation for each method.

In [19], the authors study two methods to analyze and detect body position changes
(BPC) from ECG signals. They report that BPC are often misclassified as ischemia, par-
ticularly during ambulatory monitoring. The methods compared are rotation angles from
VCG loop alignment and scalar representation of Karhunen-Loeve coefficients. Results show
that both methods lower false ischemic alarms when used in parallel with classical noise
detection, achieving up to Pp =~ 90% chance of detection. However, a previous algorithm
from the same authors [20] used on the same data set has a false detection of less than
2%, turning the BPC detection less necessary. In that paper, the authors present filtered
RMS difference series as a means to detect changes in the ST segments and ST-T complex,

when compared to an average pattern. The detector has a sensitivity of 85%, comparable



28

to more complicated algorithms. A post-processing stage based on cross-correlation allows
improvement of the performance to 90%. They present a comparison with 3 detectors from
other authors.

In [21] the authors develop and evaluate a single-lead ECG delineation algorithm
based on Wavelet Transform (WT). The algorithm is able to detect and identify peaks,
onsets and ends of individual QRS, P and T waves. The sensitivity was evaluated using
annotated databases such as MIT-BIH Arrhythmia, QT, European ST-T and CSE!. The
results show sensitivities of over 99.66% and positive predictability of 99.56%. Mean and
standard deviation of errors in delineation (onsets, peaks and ends) was found not to exceed
one sampling interval and outperformed results from other algorithms.

In [22], the authors propose to improve QRS complex recognition by using an ex-
pert system that combines different algorithms. Their implementation consists of combining
Higher Order Statistics and a Hermite characterization in a Support Vector Machine. The
combined effort produces an improved classifier, tested on 12 different types of arrhythmias
and normal sinus rhythm from the MIT-BIH Arrhythmia Database.

[23] presents a method to characterize atrial arrhythmias. It is based on the time-
frequency distribution of an ECG signal that had its ventricular activity cancelled by signal
processing. If a valid atrial signal is detected, the method classifies the signal according to

its time-frequency distribution.

'More information on these ECG databases is available in [5]
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4.2.2 SpO, Analysis

The main problem in SpOy processing are motion artifacts produced from unex-
pected deformations of the sensed region.

[24] proposes a Noise-Resistant pulse oximetry algorithm by generating a synthetic
reference signal used to reconstruct noise and artifact affected regions. The reference signal
is constructed based on information from clean signal sections and is used as a base for a
linear subspace where the reconstructed signal will reside. The authors propose that this
method can be adapted to filter other signals that exhibit a repeating, slow varying kernel
function, such as blood pressure and ECG.

A complete mathematical formulation of equations involved in SpOy measurements
is presented in [25]. Starting from Beer-Lambert law, the authors present theoretical and
in practice a method to estimate pulse oximetry in presence of motion artifacts. Their
method requires an extra illumination led used as a reference to equalize the remaining two
channels.

Based on the mathematical foundations of pulse oximetry, [26] proposes an ap-
proximation that enables the prediction of oxygen saturation levels under 70%. Currently,
calibration methods for SpOs estimation perform poorly at low saturations. This paper
develops the exact solution and then relies on a parameter estimation to adjust SpOs to
measured SaOsy. Experimental results produce better approximations compared to tradi-
tional empirical calibration techniques when monitoring fetal sheep.

The available SpO2 sensor already incorporates the latest commercial algorithms

for data processing. The importance of the SpOs sensor for this work is primarily as an
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alternate data source. Data integration has been proposed in [27, 28, 29] to estimate data
quality and/or to reduce the number of alarms. Basically, it is possible to confirm or reject
a finding in one data source by cross-validating with other sources. In our case, ECG will

be the primary source and SpOs the secondary, since it has a slower time response.

4.2.3 Location Systems

In recent years, Indoor Positioning Systems (IPS) have become more readily avail-
able commercially. Many health care institutions see the potential benefit of deploying such
technology [30, 31, 32]. Their role in medical settings is twofold: tracking patients and
tracking equipment.

IPS solutions fall into two categories: systems designed “from the ground up”,
and systems that leverage an existing wireless network [33]. A system designed from the
ground up can be tailored to meet specific requirements, but is usually associated with a
higher cost. Using an existing network may be less expensive to deploy but may require use
of devices to process location system signals that were not meant for this, and hence offer
suboptimal performance.

While indoor positioning systems have been in use for several years, applications
and requirements in the medical field often are different from those of deployments in other
settings, for example, in large warehouses where the focus is more on inventory control. A
system that provides a good solution for other applications does not guarantee success in a
medical setting [34] as this setting often requires tracking of continuously moving items and
persons. As a consequence, several healthcare specific IPS systems have been proposed.

CodeBlue [35], a system designed from the ground up, consists of a sensor network
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for vital sign monitoring, a personal digital assistant (PDA) based triage application, and
MoteTrack, a radio frequency (RF) location system. The location is determined by the
infrastructure, by comparing the current radio frequency signature to reference signatures,
collected off-line during system installation.

MASCAL [36] uses a positioning system based on the existing IEEE 802.11 wire-
less network standard (Wi-Fi). The system is reported to have short battery life due to the
Wi-Fi transmitter requirements. MASCAL coverage includes the emergency department
parking lot, the emergency room, radiology, surgical pre-operative and recovery depart-
ments, the operating Room, and three large medical wards. MASCAL also integrates data
with TACMEDCS [37], a US Navy triage system.

The AID-N system [38] comprises a wireless vital signs monitoring system and
location tracking for use at disaster scenes, in local hospitals, and during telemedicine
encounters. For outdoor locations, the conventional global positioning system (GPS) is
used. For indoor locations, MoteTrack-based location beacons must be installed.

The WIISARD system [39], includes an intelligent triage tag for medical response.
These tags have bi-directional communication, can display triage status via light emitting
diodes (LEDs), and have sensors to determine patient status. In this system, information
about the general tag location is deemed enough, as long as each tag announces itself to
care providers in the vicinity. Location is remotely estimated from signal strength using
the wireless data network.

While the above systems differ in whether the indoor positioning system was de-

signed from the ground up or not, i.e., how they leverage existing networks, they all use
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radio frequency technology for indoor positioning.

4.2.4 Integrated Systems

Vital sign monitoring via portable devices is currently available. A special sec-
tion on M-Health [40] introduces the current developments in the area. Related to this
work, there is one commercial system offered by Welch Allyn®), the Micropaq® Monitor
[41] that monitors patient electrocardiogram (ECG) signals and is used in certain hospital
wards. Both SMART and two other research systems for vital sign monitoring were de-
veloped for disaster environments (WIISARD [39, 42, 43] and AID-N [44, 38, 45]). These
two systems were implemented during the same time-frame as the SMART system. There
are three systems developed for military applications (Artemis [46], BMIST-J [47] and
TACMEDCS [48]), as well as two systems for physiological monitoring developed by re-
searchers: Telcordia® T2 [49] and a system developed at National Taiwan University [50].
Also related to our efforts is ER-One [51], a collection of specifications for disaster response.
With the exception of the Welch Allyn® commercial system, evaluation of these systems
in a significant number of real patients has been limited. A framework for comparing these

systems and SMART should include the following issues:

1. Which vital signs are monitored?

2. Are the patient’s vital signs monitored continuously?

3. Can the system monitor the location of people and equipment?

4. Is there a tunable alarm system? Can it alert individual caregivers?



33

5. Is there a mobile caregiver component?

6. Is the system open to modification to accommodate local needs?

Commercial systems

The Welch Allyn® Acuity® LT Central Monitoring Station [41] is a commercial
system that wirelessly collects data from sensors on a patient. This system monitors pulse
oximetry (SpOz2) and ECG signals and its alarms are based on thresholds. SMART could
have been based on this system, but this would have precluded local adaptation of the
patient monitoring component, the alarm system, and the monitoring station. Our system
extends these capabilities by providing an open platform for modifying the system and by
adding a mobile component for the caregiver. SMART’s location system allows patients,

providers, and equipment to be continuously monitored.

Disaster management systems

The goal of disaster management systems is to improve the management of mass
casualty incidents by introducing more accurate victim tracking and enhancing situational
awareness. This is largely achieved by replacing systems based on paper and interpersonal
verbal communications with electronic components. Two main paper components are re-
placed: records filled by first responders and paper triage tags. Verbal communications
include reports from first responders to incident commanders and transportation specialists
and vice-versa.

WIISARD (Wireless Internet Information System for Medical Response in Dis-

asters) [39, 42, 43], was developed at the University of California at San Diego. At a
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disaster site, responders start by deploying a wireless bubble of communications infrastruc-
ture. There are several levels of caregivers and the caregivers receive appropriate computing
devices for their roles. The first responder assesses each victim and logs the victim into the
WIISARD system. The responder then gives the victim an electronic tag. This tag helps
responders know where the victim is: at the site, in transport, or at a hospital. The nurses
in charge of coordinating transport of victims to hospitals have laptops or tablet computers
that allow them to see where the victims are. The disaster command and control centers
have software that allows the site commanders to see the activities of the victims, respon-
ders, and coordinators. Some of the tags given to victims monitor the patient’s SpO- level.
In addition to SpO2 measurement and location monitoring, SMART extends the vital signs
monitoring by collecting and analyzing ECG signals to generate and direct alarms to in-
dividual providers. Like WIISARD, SMART is designed to accept inputs from indoor or
outdoor location subsystems.

The Advanced Health and Disaster Aid Network (AID-N)[44, 38, 45] is another
research project focused on improving disaster response. It was developed at the Johns
Hopkins University Applied Physics Laboratory. Like WIISARD, it is focused on managing
a mass casualty incident and provides support for first responders, monitoring victims, and
incident commanders. The first responders carry tablet PCs to record patient informa-
tion. They give each patient an electronic tag and download patient information to that
tag. In addition to the electronic tag, the first responder may give the victim an SpO,
sensor and/or a blood pressure sensor. These Mote[52]-based sensors, developed by the

Code Blue Project[53] at Harvard University and Boston University, independently report
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their readings to the first responder’s tablet PC, which then uploads the information to a
central database when the network is available. The incident commander can monitor the
status of the response via accessing the central database. AID-N uses a location subsystem
based on Motes and a research-based mesh network is used to provide the communications
infrastructure. SMART substitutes commercially available network gear for the research-
based mesh network for more reliable collection of data. It also extends AID-N by collecting
and analyzing ECG data. One conceptual difference between SMART and other disaster
response systems such as WIISARD and AID-N is that the former was conceptualized so
that it could potentially become part of regular ED operations that could extend to field
work when necessary. The rationale was that, in disaster situations, scaling up a familiar
system would be preferable to implementing a new system. So while the other systems’
evaluations were based primarily on disaster drills with actors and computer simulations,
ours was based on at-risk patients in a real ED, since the expectation is that the system
can be utilized on a continuous basis inside an ED and be extended to a disaster site and
transport units when necessary. The utilization of the same system inside and outside the
hospital increases the potential for seamless integration of care and decreases time spent on

patient hand-off, which is critical in overloaded EDs.

Military systems

ARTEMIS [46] (Automated Remote Triage and Emergency Management Informa-
tion System) is an application developed for the military. This system focuses on providing
remote triage capabilities in order to help upper level resource management and coordina-

tion of efforts. It includes a commercial SpOy sensor. Patients can be triaged into one of
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five possible NATO severity categories by a fuzzy logic algorithm driven by physiological
measurements and responder evaluations. An outdoor positioning system keeps track of the
patients’ locations and can guide the provider to the patient. A mesh network with dynamic
routing tables provides connectivity among units and the central server. ARTEMIS relies
heavily on self-assessment by the soldier or on an external caregiver to change the triage
level. Only a very serious condition such as a severe SpOs or heart rate change and no
response from the subject would trigger a critical alarm. SMART builds on this approach
by monitoring ECG, in addition to SpOs. SMART does not rely on self-assessment by the
soldier /patient and, while SMART currently does not change triage levels automatically, it
provides information to caregivers so that they can adjust triage levels.

BMIST-J [47] Battlefield Medical Information System Tactical - Joint is a medical
information system implemented and currently in use by the military. The mobile PDA
units, used exclusively by caregivers, can be pre-loaded with medical records for all the
soldiers in the field. Data can be stored on the PDAs until the data can be uploaded to a
central server. It contains information about allergies, medications, and treatment and is
compatible with other systems such as the one used by the Veterans Health Administration,
so there is a seamless transition between care centers. SMART expands on this approach
by providing on-line monitoring of the soldiers/patients vital signs and by providing a geo-
positioning system.

TACMEDCS (Tactical Medical Coordination System) [48] was developed by the
Naval Aerospace Medical Research Laboratory. The main components of the system are

a PDA carried by the medical corpsman and an RFID tag that is given to the patient.
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The corpsman collects information about the patient, loads it onto the patient’s RFID tag,
and uploads it, when possible, to a central database. SMART extends this approach by

continuously monitoring the patient’s ECG and SpOs.

Vital signs monitoring systems

Telcordia® Technologies of Piscataway N.J. has a prototype system, T2 [49], for
analyzing streams of data from “Bio-Sensors”. In this system, a patient has an ECG sensor
and an accelerometer — the latter used to ignore false high heart rates derived from ECG
data that correlate with high rates of acceleration. The ECG sensor uses a BioRadio®)
from CleveMed [54] to communicate readings to a PC. The accelerometer is on a Mote from
Crossbow® [52]. The Mote uses Bluetooth to communicate to a Pocket PC PDA which
uses 802.11 to forward the data to a PC. SMART extends this approach by adding location
and integrating data from other vital signs such as SpOa, as well as providing a targeted
alarm system.

National Taiwan University [50] has been developing a wireless PDA-based tele-
monitoring system. This system monitors heart rate, SpO2, and ECG signals. The design-
ers’ rationale is that portable units alleviate the problems of large and unwieldy monitoring
systems and the need for caregivers to be in constant proximity to patients, which is helpful
in cases of radioactive agents and airborne pathogens, such as SARS. SMART expands on
this approach by providing location tracking information and decision support to distribute
targeted alarms.

In addition to the physiological monitoring systems above, the ER One Project

[51] provides a set of recommendations for implementing an “all-risks-ready” ED. SMART
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complies with many of the relevant recommendations from this project: The SMART care-
giver has a PDA to wirelessly access information stored at the SMART Central computer.
The PDA has dashboard displays of the roster of patients and per-patient access to vital
signs, current location and other data. Vitals signs data from the patients are automati-
cally logged at the SMART Central computer, as are the continuously tracked location of
patients, caregivers, and equipment. The SMART Central software runs on a laptop and
so is portable to disaster sites. SMART Central monitors the network’s connections with

Patients’ and Caregivers’ PDAs and sends alerts when a connection is lost.

4.2.5 Pervasive Systems

As technology advances, there are more options available for pervasive monitoring,.
Sensor miniaturization, wireless communication and processing power allow more efficient,
reliable and simple systems, at least from the end user perspective. In healthcare, one of
the main driving forces behind ubiquitous computing is the increasing need to move patient
care from the hospital to non-standard settings such as homes, nursing homes, improvised
waiting areas, hazardous locations or the battlefield. For at-risk patients, such as those with
chronic diseases or the increasingly aging population, being able to live in a familiar and
comfortable environment improves their life quality and frees hospital resources. In disaster
situations or during seasonal or regional disease outbreaks, response teams move from the
hospitals to improvised settings to care for multiple casualties with varying urgency levels.
Firefighters, hazmat teams and soldiers need real-time, ubiquitous monitoring to detect life
threatening events. Existing solutions from industry, academia and the military share the

same goal of developing unobtrusive, reliable and pervasive monitoring systems.
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Powerful, disposable computers, wireless technologies, sensors and energy storage
have made possible the development of Body Sensor Networks [55]. These networks are
ubiquitous, allowing oversight of the humans wherever they may go. Personalized health
care is a natural extension of these Body Sensor Networks (BSN). Future challenges are user
acceptance (both from patients and practitioners), ease of use, and avoiding data flooding
with little information.

Pervasive healthcare is a multidisciplinary field involving hardware, software, sen-
sors, embedded systems, human-computer interfaces, wireless communications and dis-
tributed systems among others [56]. In healthcare, this multidisciplinary nature is further
extended to cope with medical aspects: physiologic sensors, location systems, resource man-
agement, and intelligent systems. However, it is still an emerging field [57]. There is need
for more clinical evidence of solution feasibility and user acceptance. Most of the literature
present research projects but few show real-world implementation and results.

In [58], the authors provide a thorough analysis of 69 articles published from
2002 to 2006 in pervasive computing. There is a clear need of better implementation
reports to evaluate actual acceptance and problems. Privacy concerns are a priority both
by patients and caregivers and need to be addressed properly for a wide acceptance of

pervasive monitoring.

In hospitals

[59] presents an activity recognition system for the smart hospital. Similarly, [60]
proposes activity aware computing in hospitals. Pervasive healthcare systems must be

prepared for highly mobile caregivers. This last study shows the variety of tasks that are
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performed during a typical shift. A proposed solution involves a mobile activity monitor
that is configured to alert based on patient actions or status.

[61] explores Activity-Based Computing (ABC) in hospitals, based on pervasive
computing, supporting the naturally collaborative nature of hospital work.

[62] discusses a localization system that combines two sources of information (RFID

and Wi-Fi) to obtain a reliable location in a hospital.

At home

For elderly care, [63] shows a pervasive computing system that allows continuous
patient monitoring in non-standard settings. Simple information such as motion during
daily activities at home can be used as an index of mental ability. Also for at-home elderly
care (aging-in-place), [64] proposes computer vision as a pervasive healthcare system based
on posture recognition.

[65] shows an implementation of a home unit with an accelerometer sensor to
detect falls in the elderly and people with disabilities. It provides a means to extend “at
home” care and is based on a ZigBee mesh network. [66] also shows ECG monitoring at
home, using secure ZigBee networks.

As an attempt to move from hospital-based care to home-care, [67] adapted the
ISO/IEEE 11073 (X73) bedside monitoring standard to wearable multi-sensor monitoring

systems for home healthcare.
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5.1 Introduction

This chapter presents the signal processing algorithms required for SMART, from
the PDA to SMART Central. The goal is to issue an alarm and a proposed diagnosis when
an abnormality is detected. The algorithm has to be computationally simple so that it can
be run either centrally for multiple patients or from a PDA. Other real-time PDA-based
systems with high accuracy in rhythm classification have been reported [68], although they
did not test on real patients. In the literature, there are many heart beat classifiers [6]
with varying degrees of accuracy and speed. However, arrhythmia classification algorithms
are scarce. Most of them address only a subset of possible abnormalities in the ECG
signal [69, 70, 71], are beat based [72] or are too complex to implement in a real-time
multiple patient setting [6]. More importantly, none of them try to classify on untethered
patients. Monitoring ambulatory patients has always been difficult [73, 74, 75]. Muscle
noise, electrode motion artifacts and baseline wander are the main noise inducing factors.
Even simple body position changes can lead to changes in the ECG recording [19]. Our
approach does not trust beat morphology, which can be distorted by noise, but rather
we infer diagnosis from an integrated data approach. The proposed algorithm has two
steps. First, it detects the beat positions from the ECG signal. Then, based on those beat
positions, ECG statistical properties and information from the SpOg sensor, the algorithm
determines a probable diagnosis. Similar data integration has been proposed in [27, 28, 29|
to estimate data quality and/or to reduce the number of alarms.

Beat algorithms were evaluated using Physionet’s MIT-BIH databases [5] with

varying degrees of noise. A selection method was proposed based on specific goals. The
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ECG-derived heart rate (HR) was further processed using a non-linear filter to reduce false
measurements. Finally, a decision tree was implemented using data from both sensors as
well as processed data. This diagnosis algorithm was tested and evaluated on a commercial
patient simulator and on healthy volunteers. The complete system was tested on real

patients.

5.2 Implementation

5.2.1 Requirements

The requirements for scalability and eventual use of PDA hardware for signal pro-
cessing limited our choice of algorithms to simple and fast ones. After a first selection
among known methods [6], we selected time-based algorithms with easily available source
code. The options were CSAIL’s Peak [76], Physionet’s SQRS (P. SQRS) and Physionet’s
WQRS (P. WQRS) [5] algorithms. P. SQRS and P. WQRS were ported to our own envi-
ronment and modified to comply with SMART’s requirements. Only the adapted SQRS
(aSQRS) algorithm was considered in the final selection because it clearly outperformed
WQRS in our setting. Peak algorithm was already implemented in ORNetDB. The modi-

fications introduced were:
1. Adaptability to work with streaming data (only a short time window is allowed);
2. Sampling frequency independence;
3. Gain independence;

4. Noise tolerance.
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The sampling frequency and gain independence were introduced to allow SMART to use
any hardware for ECG acquisition. These modifications proved to be good features because

our custom-made boards had different gains.

5.2.2 Base Algorithm Descriptions
Peak algorithm

The Peak detector algorithm is applied directly to the ECG data. It uses a 167 ms
window, divided in three 55.6 ms segments. This limits the maximum detectable beat
frequency to 360 BPM. It scans the whole range looking for the maximum value. If the
maximum value is on the central segment and is higher than a threshold, the position is
marked as a beat and its amplitude is saved as the new threshold. At each new possible
beat, the threshold is updated, using a linear decay between the previous beat amplitude

and the current window maximum, at a variable rate of

last beat ampl. — current peak ampl. 72

5 0 (5.1)

The threshold may only decrease unless it is set by a new beat detection. Fig. 5.1 shows

an example, in which an extra beat is detected due to a high P wave and a rising baseline.

P. SQRS algorithm

P. SQRS algorithm uses a Finite Impulse Response (FIR) filter as an approxima-
tion to the slope of an ECG signal [77]. Using a variable threshold, it detects and identifies
QRS complexes from artifacts. The C code was extracted from PhysioNet [5] web site and

adapted to handle data streams.
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Figure 5.1: Peak algorithm. A beat is detected if the window maximum is also the segment
maximum and both are greater than a threshold.

2000
1000 |

-1000
-2000
-3000

4000 [ L ‘fil‘ter OUtpUt """"
5000 b SOt SOOS OO UNUUNS SO threshold -------- |4

i i i detected beat X%
-6000 | | | I

0 1 2 3 4 5
Time [s]

Amplitude

Figure 5.2: P. SQRS algorithm. A beat is detected when the filtered signal crosses a
threshold 2 to 4 times. When there are more than 4 crossings the position is marked as an
artifact.
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A convolution filter is applied to a vector containing the last 10 values acquired
from the ECG signal, to enhance its slope. If the filtered signal is greater than a threshold,
the time is saved and the algorithm enters a decision phase. Two to four of these detections
within 160 ms of each other indicate that a normal beat was identified. More than 4
detections within 200 ms of each other indicate an artifact. After a decision has been made,
the algorithm is reset. Once every 2 seconds, if there is no detection, the threshold is reduced
by 1/16%". If there are more than 4 detections, the threshold is increased by 1/16!". Every
time a normal beat is detected, the threshold is recalculated, asymptotically converging to
1/4 of the maximum filter output obtained so far. Fig. 5.2 shows the SQRS filter output

for the same ECG signal used in Fig. 5.1.

P. WQRS algorithm

The original WQRS algorithm was obtained from PhysioNet [5] and adapted to
handle data streams. It is based on the Length Transform [78] of the ECG.

The Length Transform of a function with n variables is defined in the interval
[t,t+ q] as

Lin, q.t) = /t s (5.2)

where ds is an infinitesimal element along the function. For a discrete, one channel signal,

the Length Transform of a signal z[n| using a window ¢ can be calculated by:

itq—1
L; = Z \/1 + (xk — $k,1)2 (53)
k=i

Our implementation considers a window length of 130 ms, in order to maximize

the detection of QRS complexes. After the transformation, the output is compared to a
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Table 5.1: Beat positions for figures 5.1, 5.2 and 5.3.

Reference beats [s] 0.43 | 1.58 | 2.76 - 1391
Peak alg. beats [s] 0.40 | 1.56 | 2.73 | 3.74 | 3.89
SQRS alg. beats [s] | 0.39 | 1.54 | 2.72 — | 3.87
WQRS alg. beats [s] || 0.43 | 1.58 | 2.76 - 13.92
WQRS J-points [s] 0.53 | 1.69 | 2.87 — 1 4.02

threshold and then further tested for a rising slope of the Length Transform. This algorithm
has the added ability to mark the end of the QRS complex, also known as J—point. Fig.
5.3 shows the Length Transform of the ECG signal from Fig. 5.1, and the detected onset

and offset of the QRS complex.

Beat detection

Table 5.1 and Fig. 5.4 show the detected beat positions reported by the algorithms
for the original ECG signal from Fig. 5.1. The reference beat positions are obtained from
the annotation file associated to the clean record. Note that there is a small shift in beat
positions. However, they are all within 150 ms of the reference, and thus considered match-
ing beats. The only unmatched beat in our example was detected by the Peak algorithm

at 3.74 s.

5.2.3 Beat Detection Accuracy

The algorithms were evaluated for beat detection accuracy under varying noise
conditions. Using PhysioNet’s MIT-BIH Arrhythmia Database and the Noise Stress Test
tools, noise was added to each one of the 48 half-hour ECG recordings in 6 discrete levels:

24 dB, 18 dB, 12 dB, 6 dB, 0 dB and —6 dB SNR. The noise signal used is a record



48

100000 . . .

90000 5
80000
70000
60000
50000
40000
30000 |-
20000
10000
0

T
Length Transform -
threshold --------
detected beat +
end point (J)

Amplitude

Time [s]

Figure 5.3: P. WQRS algorithm. A beat is detected if the Length Transform of the signal
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Figure 5.5: ECG sample with 24 dB SNR. Noise ends at 420 s.

combining baseline wander, muscle noise and electrode motion artifacts. As suggested in
[5], it is added in alternating 2-minute segments, after an initial 5 minutes of clean signal.
Examples for 24 dB, 6 dB and -6 dB SNR are shown in Figures 5.5, 5.6 and 5.7.

Beat detection accuracy was evaluated using the standard Sensitivity (Se) and
Positive Predictability (+P) indices [6],

TP TP

N p—_ -
Se=7p1rNn LT TPIFP

(5.4)

where, T'P: number of true positive detections, FN: number of false negatives or missed
beats and F'P: number of false positives or false beats.

Table 5.2 shows the Se and +P indexes for the different noise conditions. It is
clear that no single algorithm is best. Depending on the noise level, maximum Se and +P
is obtained on different algorithms and no single algorithm has both the best Se and +P
for a given noise level. The purpose of the beat detection algorithm in SMART is to obtain
an accurate HR series from the raw ECG, from which to derive alarms and diagnoses. As

reported in our previous work [79], the probability of computing an error in HR as a function
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Figure 5.7: ECG sample with -6 dB SNR. Noise ends at 420 s.

Table 5.2: Algorithm Se and +P [%] by noise level. Boldface indicates maximum Se and
+P.

| Noise (SNR) [ 24dB [ 18dB [12dB| 6dB | 0dB | -6 dB |
Peak Se || 91.91 | 91.54 | 88.93 | 78.12 | 68.84 | 64.40

+P || 93.85| 92.89 | 86.60 | 76.53 | 69.16 | 65.74

P. SQRS Se || 98.62 | 97.39 | 92.41 | 81.92 | 67.92 | 56.33
+P || 98.96 | 96.77 | 87.52 | 77.16 | 73.46 | 78.97

P. WQRS Se || 99.78 | 99.77 | 99.48 | 99.08 | 98.78 | 92.18
+P || 98.60 | 97.15 | 81.66 | 68.44 | 59.42 | 53.40

aSQRS Se || 96.63 | 96.34 | 95.00 | 90.71 | 83.31 | 72.30
+P | 98.31 | 97.92 | 94.04 | 82.32 | 74.56 | 67.87
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of missed beats (F'N) and false beats (F'P) results in

FN+ FP

P (incorrect HR) = TP FN 1 FP (5.5)
which can be rearranged to
. 1
P (incorrect HR) = ————. (5.6)
L+ rvirr
TP TP

Equation set (5.4) can be rewritten as

FN 1-Se FP 1-(+P)

TP~ S ' TP +P (51)
From (5.4) and (5.5), the probability of having an incorrect beat-to-beat HR is
pP.-S
P (incorrect HR) =1 + ° (5.8)

4P —(+P)-Se+ Se’

Using (5.8) it is possible to evaluate and select the algorithm whose Se and +P
allow for the minimum probability of HR error. Fig. 5.8 is updated from [79] using equation
5.8 and Table 5.2. The aSQRS algorithm has a reasonably low probability of error in the
clean range (24 to 16 dB) and the lowest from 16 dB to -6 dB SNR. aSQRS algorithm is

best for beat detection under SMART’s conditions.

5.2.4 Heart Rate Derivation

Besides selecting the best beat detection algorithm to minimize the probability of
deriving a wrong HR, some post-processing is made to further improve HR computation.
As important as the actual HR value, HR variability can be used to screen for several
medical conditions [80, 81, 82]. Some tests were made to determine the best approach for
HR filtering. The methodology was introduced in [79], but is repeated here for completeness

with updated results.
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Figure 5.8: Heart Rate error probability.

The instantaneous HR is computed for consecutive normal QRS beats detected.
We evaluated 3 different non-linear filter options for HR series processing: no filtering, a
median filter and an outlier rejection filter. To compare the different options, we compute
the standard deviation of the heart rate series. A filter that preserves HR variability would
not alter significantly its standard deviation. We computed the Heart Rate Standard Devi-
ation (HRSD) for all the records used in the noise sensitivity study. The reference HRSD is
computed using the database’s annotated beat positions. The no filter option is computed
directly from the reported beat positions. For the median filter, we chose order 5, which is
the minimum order possible to reject wrong HR values after either a single missed beat (1
wrong HR) or a single false beat (2 wrong HR). For the outlier rejection filter, we chose to
reject new HR values that were over 10 BPM apart from the last one.

The results are shown in tables 5.3, 5.4 and 5.5. Without filtering, our proposed
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Table 5.3: Std. Dev. of Heart Rate with no filter

SNR [ ref. | P. SQRS P. WQRS aSQRS
24dB | 19.1 | 26.1 30.2 26.0
18dB | 19.1 | 30.2 33.3 26.9
12dB | 19.1 | 42.3 54.0 33.2
6dB | 19.1 | 51.2 64.1 46.7
0dB | 19.1 | 524 70.7 52.1
6dB | 19.1| 471 72.4 52.9

Table 5.4: Std. Dev. of median filtered Heart Rate

SNR [ ref. | P. SQRS P. WQRS aSQRS
24dB | 19.1 | 18.1 24.3 18.7
18dB | 19.1| 18.9 25.0 18.7
12dB | 19.1 | 256 39.2 20.2
6dB [ 19.1| 304 53.3 26.4
0dB | 19.1| 308 64.2 29.5
6dB | 19.1 | 27.7 66.6 26.7

algorithm aSQRS is closest to the reference HRSD. As the noise level increases, so does the
HRSD due to the increasing number of incorrectly detected beats. With a median filter,
HRSD is much closer to the reference, even at high noise levels. aSQRS is the best overall
algorithm. Finally, since the outlier rejection filter has lower HRSD than the reference, it
over-filters and hides natural HR variability. Our final choice is to implement an order-5

median filter after beat detection with aSQRS to derive the HR series.

5.2.5 Implemented Algorithm: aSQRS

All of the base algorithms in 5.2.2 were implemented for the SMART project.
However, the ported versions of WQRS and Peak algorithm were rejected and aSQRS was
selected due to its overall performance. The selection method was discussed in section 5.2.3

and 5.2.4. Only the aSQRS, the actual implemented algorithm, is described here.
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Table 5.5: Std. Dev. of Heart Rate with outlier rejection

SNR [ ref. | P. SQRS P. WQRS aSQRS
24dB | 19.1 | 16.1 17.2 16.5
18dB | 19.1 | 16.0 17.1 16.5
12dB | 19.1 | 16.2 18.7 16.4
6dB | 19.1| 16.5 21.8 17.0
0dB | 19.1| 16.0 28.6 17.2
6dB | 19.1| 15.7 41.6 16.7

The aSQRS algorithm was built from P. SQRS. It uses a Finite Impulse Response
(FIR) filter as an approximation of an ECG signal’s slope [77]. Using a variable threshold,
it detects and identifies QRS complexes from artifacts. The C code was extracted from
PhysioNet [5] web site and adapted to handle data streams without information about the
signal properties, such as sampling frequency or gain and to improve its performance on
signals with changing noise conditions.

Just like with the original P. SQRS algorithm, the filter mask is [1 464 1-1-4 -6
-4 -1] and its maximum gain is at 0.086 - F or 31 Hz for a signal sampled at 360 Hz (Fig.
5.9). It attenuates frequencies under 0.002 - Fs and over 0.349 - F; and has a notch between
0.196 - F5 and 0.205 - F5. This convolution filter is applied to a vector containing the last 10
values acquired from the ECG signal. If the filtered signal is greater than a threshold, the
time is saved and the algorithm enters a decision phase. Two to four of these detections
within a time period of 160 ms indicate that a normal beat was identified. More than 4
detections within a time period of 200 ms indicate an artifact. After a decision has been
made, the counter is reset. The threshold is reduced by 1/16" once every 2 s if there is no

6th

detection. If there are more than 4 detections, the threshold is increased by 1/16"". Every

time a normal beat is detected, the threshold is recalculated, asymptotically converging to
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Figure 5.9: aSQRS filter response.

1/4 of the maximum filter output obtained so far. Fig. 5.2 shows the SQRS filter output
for a typical ECG sample.

For SMART, some extra features were added. To avoid training on noisy signals,
automatic retraining when changing patients and also after a remote reboot of the PDA
was incorporated. Specifically, aSQRS includes a 1 s inactivity period and then it stores
the maximum filter output value for 2 s. This 3 s training period is entered after detecting
a period of at least 15 s without data.

To compensate for noisy conditions, aSQRS considers a decaying maximum filter
output value. This is the main reason for the differences between P. SQRS and aSQRS
in Fig. 5.8. A “no-beat” output was also added to allow for a quick alarm on asystole.
This output is issued after 3 s (<20 BPM) of inactivity. Finally, the sampling frequency
is continuously updated based on the incoming data and is used to unpack and timestamp
the individual ECG samples.

The beat detection algorithm was implemented and successfully run on the PDA;
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however, this solution was not deployed and all processing was done at the main server.

5.2.6 Rhythm Diagnosis

The original constraint of having a fast algorithm made necessary the development
of a simple decision system for diagnosis. A decision tree based on statistical properties
of the data was implemented. Fig. 5.10 shows the flow diagram of the decision tree. The
inputs are the ECG signal, the output from aSQRS and the SpOs HR. The diagnosis
outputs are: Mismatch, Asystole, Ventricular Fibrillation (VFib), Ventricular Tachycardia
(VTach), Irregular Beats, Leads off, Noisy signal, Tachycardia, Bradycardia and Normal
sinus rhythm. The statistical properties and thresholds selected were based on expert
advice, previous work on diagnostic detection techniques [71, 83, 84, 72], as well as trial
and error with our healthy volunteers, STRATUS test set and Physionet data.

The final decision tree uses the following measurements and information: aSQRS
beat classification (normal, artifact or no-beat), ECG signal max and min values, skewness
of the ECG signal, QRS width, standard deviation of beat-to-beat (RR) series, computed
HR and previous diagnosis. If available, SpOs sensor information is also used for validation.
Fig. 5.10 shows the decision tests and thresholds: NOBEAT is detected by aSQRS when
there is a period of 3 s without beats. SpO2 HR is NORMAL when the sensor-reported HR
is over 20 and under 150 BPM. SAT is detected when the ECG signal is saturated (i.e. the
maximum and minimum values are observed in a 0.5 s window). NOSKEW is when ECG
data in a 2 s window have a skewness under 0.75 with a hysteresis of £0.25 (0.5 — 1.0).
QRS WIDTH is computed by looking at the vicinity of the detected QRS and measuring

the time between mean crossings. ARFCT are artifacts detected by the aSQRS algorithm.
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Table 5.6: Diagnostic accuracy, Stratus validation data.

Se Sp +P -P  Accuracy

Asystole 1 099 0.94 1 0.99
Bradycardia | 0.71 0.99 0.90 0.96 0.96
Irregular Beats | 0.94 0.95 0.76 0.99 0.95
Normal | 0.89 0.99 0.97 0.96 0.96
Tachycardia | 0.96 0.99 0.91 0.99 0.98
Vent. Fib. | 0.90 1 096 0.99 0.98
Vent. Tachy. | 0.91 1 1 0.99 0.99

SDSD [85, 86] is the standard deviation of successive differences in RR intervals, and is used
to detect an irregular heart rate if over 0.4. Finally, if the computed HR is over 100 BPM,
the diagnosis is tachycardia. If under 60 BPM, bradycardia. These last two thresholds are
patient specific and can be changed by the SMART operator. At this point, if no diagnosis
has been selected, it is classified as normal sinus rhythm.

The diagnosis algorithm is based primarily on the ECG data because the SpO,
sensor component has a fairly slow response, making it less sensitive to artifacts, but lacks
morphology details of the ECG patient signal. On the other hand, due to the ambulatory
nature of the target, it is unwise to trust the selected diagnosis on a beat-to-beat basis.
Artifacts are prone to be mistaken for all sorts of arrhythmias [73], which would lead to false
diagnoses. To minimize those errors, we implemented a voting mechanism: the reported
diagnosis is the one that is the most frequently occurring in a 15 s. window. During our

early tests, this voting mechanism proved to be a valuable addition to the system.
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5.3 Results

Our reportable results come from simulated and real patient experiences. After
training on the original data from Stratus Center and healthy volunteers, we obtained a
second simulated record for validation. The test set was prepared by STRATUS center
personnel as a single-blinded experiment. The protocol required that all medical conditions
were present and each episode lasted at least 1 minute. The simulator produced 561 s of
data. We recorded the ECG from the patient simulator with the exact same hardware used
on real patients and ran the diagnostic algorithm. Only the medical conditions were tested:
Asystole, Bradycardia, Normal Sinus Rhythm, Tachycardia, Irregular Beats, Ventricular
Fibrillation and Ventricular Tachycardia. The SpOs sensor data were not available for
collection. The results were adjusted to avoid bias introduced by the diagnosis delay (15
s) and are shown in Table 5.6. To compute Sensitivity (Se), Specificity (Sp), Positive
Predictability (+P), Negative Predictability (—P) and Accuracy, eq. 5.4, 5.9 and 5.10 were
used, based on True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN) diagnoses. Low Bradycardia Se and low Irregular Beats +P were due to
misclassifications. The transition to Bradycardia generated a short interval of Irregular

Rhythm due to the sudden change in HR.

TN TN

P = TN T FP TN + FN (5.9)
TP+ TN

A _ 5.10

MR = P T FN+ FP+ TN (5.10)

Later, the printed ECG was shown to two independent experts and their annota-
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Table 5.7: Accuracy comparison with 2 experts, Stratus validation data.

Algorithm Expert 1 Expert 2

Asystole 0.99 0.98 0.98
Bradycardia 0.96 1 1
Irregular Beats 0.95 1 0.99
Normal 0.96 0.98 0.98
Tachycardia 0.98 0.98 0.98
Vent. Fib. 0.98 0.97 0.97
Vent. Tachy. 0.99 0.99 0.99

Table 5.8: Reported diagnosis alarms for real patients.

Alarm | Total TP | 4P

Asystole 79 0 0

Ventricular Fibrillation 46 0 0
Ventricular Tachycardia 0 0 -
Tachycardia (ECG) 124 61 | 0.49
Bradycardia (ECG) 18 12| 0.67
Irregular rhythm 116 43 | 0.37
Mismatch 59 59 1

Noisy 59 47| 0.8

Leads Off 56 49 | 0.88

tions compared with the diagnosis algorithm. As shown on Table 5.7, all 3 sources agreed
on the rhythms. The small differences were due to timing discrepancies regarding rhythm
durations.

During the implementation phase in the waiting room, important results were
obtained. In a 10-month period, 145 real patients were monitored, recording a total of
6815 min and generating 557 diagnostic alarms, averaging about 1 diagnostic alarm every
12.2 min. Alarms were generated for every diagnosis other than Normal sinus rhythm. After
manually reviewing the alarms, Table 5.8 was generated. Only +P index can be calculated,
because we do not know the non-detected events.

The results clearly show that real patients in ambulatory settings are very dif-
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ferent compared to stationary, simulated patients. The low +P indexes are mainly due
to misclassified artifacts. The diagnosis algorithm usually failed when the patient moved
for more than 8 s (half the voting window length), which was quite common. Asystole and
Ventricular Fibrillation alarms were due mostly to the adaptive aSQRS algorithm threshold
becoming too high due to a run of movement artifacts. False Bradycardias were a lesser
form of the same problem, while false Tachycardias were due to a series of artifacts mistaken
for beats. Irregular rhythms were also sometimes misclassified due to artifacts. We believe
that a solution to these problems involves improving the Noise detection rate. Even with a
+P of 0.8, it was evident that there were too many False Negatives. The best result was ob-
tained by the Mismatch diagnosis, which issued when the ECG is shaped like an Asystole or
Ventricular Fibrillation but the SpOs HR. data are within normal range. Mismatch alarms
were soon considered a new kind of Noise alarm by the SMART Operator and handled as
technical alarms like Noisy and Leads Off.

An attempt was made to reduce false alarms by integrating information from the
location system. The location tags work by emitting an ultrasound pulse every time the
subject moves. However, the sensors were too sensitive for our purpose and would constantly
indicate a noise condition when worn.

An additional 575 other SpO2 and technical alarms were generated by the system,
and are shown in Table 5.9. These alarms have better 4+ P because they are easier to detect.
The SpOs sensor has a much slower response, making its alarms more stable. Technical
alarms such as a SpOg sensor off the finger or no wireless communication to the PDA are

very clearly defined, and thus either true or false.
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Table 5.9: Other alarms reported for real patients.

Alarm | Total TP | +P

High HR (SpOg sensor) 79 75 0.95
Low HR (SpOg sensor) 21 15 |0.71
Low SpOaq 44 35| 0.8

No Signal 0 0 -

SpOsy sensor off 86 85| 0.99

Lost communication 329 309 | 0.94
Battery Low 16 15| 0.94

As discussed in [87], the number of false alarms was considerable and probably
would be annoying to caregivers if the system were to operate unattended. However, in
these conditions, the SMART Operator was able to detect 3 real events (Bradycardia and
two Irregular Beats) based on medical alarms that were indeed deemed important by the
medical personnel. A fourth patient benefited from the system by having an ECG recorded
during her waiting time that showed pacemaker activity every time her HR dropped from

60 BPM.

5.4 Discussion

This chapter presents all the signal processing work developed for monitoring un-
tethered patients. First, from our preliminary work in [79], a quantitative method was
proposed to select a beat detection algorithm based on minimizing the probability of error
for beat-derived HR. This approach seeks to ensure an optimal algorithm selection in terms
of the intended goal, which in this case was an accurate HR. The selected algorithm was
implemented and modified to quickly detect beat-level conditions, such as noise or asystole.

In order to achieve independence from the hardware used for its capture and to accommo-
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date patient-to-patient variability, an adaptive threshold was also introduced. A non-linear
filter was selected for HR series processing to reject miscalculated rates. Finally, a multiple
diagnosis algorithm based on ECG and SpOs sensor data provided a decision support tool
to alert and reprioritize multiple patients in the waiting room of the Brigham and Women’s
Hospital ED.

Our analysis suggests that the programmed algorithm performed reasonably well
in detecting several medical conditions in a controlled environment. The possible outputs
included Asystole, Bradycardia, Normal Sinus Rhythm, Tachycardia, Irregular Beats, Ven-
tricular Fibrillation, Ventricular Tachycardia, Mismatch, Noisy signal and Leads off, which
were diagnosed based on a decision tree that integrates SpOs HR, raw ECG data and the
output of a beat detection algorithm. The input integration allowed improvements in the
detection rate by avoiding diagnoses that were noise-induced. Our design was biased to
avoid missing important medical conditions and to ensure a short response time, although
this greater sensitivity resulted in a considerable number of false alarms. Tests on actual
patients confirmed observations in [73] and showed that movement artifacts were the main
cause of misdiagnoses and false alarms. Our use of voting windows was an important addi-
tion, although it increased response time. We believe that a better noise detection system
is an absolute requirement to improve detection rates and accuracy.

Overall, SMART was provided with a multiple diagnosis support tool for super-
vised monitoring and alerting. The system managed to detect and speed admission for 3 out
of 145 patients who were initially triaged as less critical. The diagnosis algorithm allowed

the SMART operator to oversee a number of patients with minimal effort. A beneficial
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side effect of such a system is its data logging, which could allow faster evaluation once the

patient is seen by a physician.
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6.1 Introduction

Available Indoor Positioning Systems (IPS) products, typically sold as installations
of a tailored hardware and software packages, are often based on the one type of technology
that the vendor supports [88]. This could be a problem for the prospective buyer, as access
to data and experiences gained from large deployments of different technologies are still
limited. In the absence of publicly available information, the buyer must rely on the vendor
of IPSs for information on requirements and performance. However, vendors will be biased
towards proposing their own technology as the solution to a wide range of situations and
requirements.

This chapter describes the implementation of the ultrasound based indoor position-
ing sub-system, discusses which considerations went into technology choices, and provides
details about the design and implementation together with a summary of our experience

with it.

6.2 Case Description

In response to problems associated with disaster management, unveiled by events
in recent history, and opportunities afforded by improvements in technology, the Scalable
Medical Alert and Response Technology Project (SMART) [79, 89, 87] aims at evaluating
technologies for wirelessly monitoring vital signs and locations of otherwise unattended pa-
tients. SMART acquires patient vital signs data from sensors and wirelessly communicates
those data to a central server, tracks the location of patients, providers, and equipment, and

autonomously monitors the patient’s vital signs data, and communicates significant events
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to appropriate providers.

The design criteria of SMART were to create and evaluate hardware and soft-
ware platforms to enable extensions and modifications, and to use inexpensive commodity
components so as to allow scaling and wider use.

While the design of SMART aims at mobile deployment, both indoor and outdoor,
it initially was implemented in the Brigham and Women’s Hospital (BWH) emergency
department (ED). The tracking system in SMART Central also is capable of receiving
location data from outdoor geo-positioning systems, though this was not implemented at
the study site. Accordingly, the location system described here is the indoor locationing
sub-system of this project.

Patient vital signs were obtained from an electrocardiograph (ECG) sensor and
a pulse oximeter (SpO2) connected to a personal digital assistant that transmits the data
via wireless 802.11b communication. The patient carries these monitoring devices and an
indoor positioning tag in a waist pack. These tags, from Sonitor Technologies [90], use
ultrasound-based technology for positioning.

The heart of the SMART system is a server, referred to as SMART Central, which
contains (1) a streaming data manager that receives and processes SpOy, ECG, and location
data streams; (2) a decision support module that analyzes these streaming data to generate
alarms; and (3) a logistics support manager, a rule-based system, to dispatch alarms to
providers or to other systems.

SMART also incorporates PDAs for caregivers that allow them to view the roster

of patients, review the data for a patient, and to receive and respond to alarms. SMART
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was deployed in the BWH ED from June 2006 to December 2007 as part of an evaluation
study [87]. Following approval from the Institutional Review Board at BWH, the system
was tested on 151 patients of whom six patients were excluded. During the study period,
events were reported relating to three patients in the waiting room that required a re-triage
and immediate admission to the ED. SMART was also later tested as part of city—wide

disaster management drill in Boston [91].

6.3 Methods

6.3.1 Technology Assessment

The multitude of vendors, using different technologies and having overlapping
self-proclaimed application areas, coupled with little real-world unbiased, comparative in-
formation on different systems, makes it challenging to align operational requirements of
a planned system with the different vendor offerings. However, understanding the physi-
cal properties of positioning systems technologies can aid in this task. Examples of such
operational requirement dimensions are positioning resolution and accuracy, range, scala-
bility, integration into existing work-flow and systems, privacy concerns, expandability, and
system maintenance.

Any positioning system comprises a mobile unit and a referential infrastructure.
The mobile unit is physically attached to the object being positioned. The infrastructure
provides the referential location framework within which the mobile systems are positioned.

We can subdivide between two types of positioning systems: when the mobile

unit is the transmitter, and its position is determined by the infrastructure with respect to
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itself [92], the system is called a “remote positioning” system [93]. On the other hand, if
mobile unit receives transmitted information from the fixed infrastructure and computes its
own position, this is called “self positioning”. Global Positioning Systems (GPS) receivers
and the Cricket system [94] are examples of the latter.

Remote positioning or infrastructure—centric systems, usually require less complex
mobile units, lowering both their cost and size, as well as extending their battery life. Self
positioning or user—centric systems have the advantage of being easily scalable. They also
are in line with privacy concerns, since the computed position can be kept confidential.
However, the higher computational requirements imply a more expensive unit, larger size
and lower battery life. As our system is a monitoring system, it was natural to choose a
remote positioning type of system.

Regardless of self positioning or remote, a positioning system relies on the prop-
erties of a signal sent from a transmitter to a receiver. The three main properties used are
Angle of Arrival (AOA), Received Signal Strength (RSS) and Time of Arrival (TOA) [88].
Systems that apply radio frequency (RF) signals prefer to use signal strength related mea-
sures like RSS, while ultrasound (US) based systems use time related methods such as
Roundtrip Time of Arrival (RTOA) and Time Difference of Arrival (TDOA).

Our operational requirements for the ED installation were: location resolution ap-
proximately 15 feet (about 4.5 meters) or room-level, less than 50 objects to be tracked, no
need for self-positioning, and a strict rule of no interference with medical equipment. As the
system was not integrated with other clinical information systems during this implementa-

tion, there were no requirements regarding existing infrastructure beyond non-interference.
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However, since we were integrating the positioning system with our own electronic infras-
tructure on a largely open source platform, getting access to implementation documentation
such as transmission protocols and help with decoding these from the vendor was a necessity.

Given these requirements, our choice of a positioning system can be discussed
using the dimensions of transmission speed, signal reflectivity, and signal range. At the
time of the BWH system implementation, the systems available were either radio frequency
(RF) or ultrasound (US) systems. For RF, these dimensions can roughly be considered
to be high speed, low reflectivity, and high range, while for US they can be considered
to be low speed, high reflectivity, and low range. High transmission speed implies lower
transmission times for a fixed message, resulting in a higher number of mobile units that
can be serviced by the same infrastructure, or more information transmitted to and from
each unit. High signal reflectivity means that signals can travel around obstacles or can
be confined by suitable barriers. This can be exploited when room level position resolution
is sought as a smaller investment in infrastructure is necessary. Typically, a room can be
covered by one receiver. However, there needs to be transmission of signal waves out of any
reflecting enclosure containing the transmitter. While this opening for ultrasound can be
of the order of the wavelength used (mm), we found that in practice tags were not detected
when placed into a shirt, pant or coat pocket. High signal range means that transmitters
and receivers can be spaced further apart. However, if this range is higher than it needs to
be, complications occur as more of the infrastructure needs to process signals from a given
mobile unit. On the other hand, low signal range, in general, requires a larger investment

in a fixed infrastructure for a given level of coverage.
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Figure 6.1: Ultrasound tag. Figure 6.2: Detector with wireless adapter.

As we had few objects to track, and these objects did not move often, transmission
speed was not a limiting factor when considering US. The sizes of the rooms we had to cover
did not exceed US range. However, given RF wave low reflectivity and high range, the
investment in infrastructure to achieve our targeted resolution using RF was deemed higher
than in the US case. Essentially, just one US detector per room was needed to achieve room-
level resolution. Also, only five of our US detectors actually needed specialized tuning to
perform adequately. Extensive tuning is often essential to the functioning of radio frequency
systems in order to be able to correctly triangulate positions. The ultrasound frequencies

used by the system did not conflict with any medical equipment.

6.3.2 Implementation Overview

Our IPS hardw